
A Development of Real-time Failover
Inter-domain Routing Framework using

Software-defined Networking

Yoshiyuki Kido1,2, Juan Sebastian Aguirre Zarraonandia2, Susumu Date1,2,
and Shinji Shimojo1,2

1 Cybermedia Center, Osaka University,
5-1, Mihogaoka, Ibaraki-shi, Osaka 5670047, Japan

{kido, date, shimojo}@cmc.osaka-u.ac.jp
2 Graduate School of Information Science and Technology, Osaka University,

1-5, Yamadaoka, Suita-shi, Osaka 5650871, Japan
j.sebastian@ais.cmc.osaka-u.ac.jp

Abstract. Internet Exchange Points (IXPs) play a crucial role in the
interconnection between Internet Service Providers. Consequently, fail-
ures in the underlying IXP infrastructure impact the end-user experi-
ences and can potentially translate into a financial loss for participants.
Several research groups have attempted to override the Border Gateway
Protocol (BGP) route selection process in IXP using a software-defined
networking (SDN) approach to provide fast failover times, and to con-
trol how traffic flows between IXPs. In this research, data plane failures,
such as physical disconnections between participant routers and the IXP
switch, interrupt traffic flows until the configured BGP hold timer in the
IXP route server expires. The objective of this research is to decrease the
packets dropped during an IXP data plane failure event. We attempt to
decrease the disconnection time between the IXP participants to a value
lower than one second, which is the minimum configurable BGP Hold
Time. In order to pursue this goal, we have developed a framework that
reduces the failover process to the order of milliseconds. The results of
the experiments registered an average failover time of 31 milliseconds.
As a consequence of improving the failover time, the average packet loss
is reduced.

Keywords: Software Defined Networking, Stream Processing, Internet
Exchange Point

1 Introduction

Services that provide real-time communication such as VoIP, have stricter de-
mands for continuous connectivity than during the origins of the Internet. Failing
to do so could translate into a negative reputation and subsequently a large fi-
nancial loss. At the same time, there has been an increase in the reliance of the
scientific community on network infrastructures to share and store large amounts

2 Yoshiyuki Kido et al.

of data, which in most cases is geographically dispersed. For example, large-scale
instruments like the Large Hadron Collider produce petabytes of data that are
transmitted to regional locations and are finally distributed to researchers [7].

According to current trends, the data intensity of many disciplines is pro-
jected to increase by a factor of ten or more over the next few years [8]. Scien-
tific de-militarized zones (DMZ) are not only transferring elephant flows through
national research networks, but also storing large data sets in public cloud in-
frastructures. In order to support these operations cloud service providers peer
directly with Research & Education networks in order to avoid congesting their
own networks. In some cases, cloud service providers peer with commodity IXPs
that serve the traffic of a large percentage of ISP customers, which are not de-
signed to carry long-term data set file transfers [5]. As this trend continues, IXPs
will play a crucial role in the interconnection between ISPs, CDNs, and research
networks. Consequently, any failure in the underlying IXP infrastructure will im-
pact end-user experiences and research endeavors, and can potentially translate
into a financial loss for its participants.

As more heterogeneous participants around the world join the network, fu-
ture IXP implementations will have to support several features in their network
architectures, such as:

– Quickly identify connectivity disruptions within their infrastructure.
– Resolve connectivity failures faster than current routing protocols.

Guaranteeing continuous connectivity across the Internet is a large challenge for
network operators, because exercising any resilience or traffic engineering tech-
nique beyond their administrative domain is not possible. Furthermore, there are
several technologies and protocols implemented in Wide Area Networks (WAN)
that are difficult to change (e.g., Border Gateway Protocol (BGP)) due to their
strong standardization and widespread adoption during previous decades.

In order to enable fast failover and continuous forwarding between Internet
domains, researchers from both academia and service providers have proposed
traffic engineering approaches and inter-domain protocol enhancements that al-
low manipulation of the routing decision process. Still, these techniques have not
achieved sufficient standardization to be widely adopted by all Internet partici-
pants, mainly because these techniques introduce routing incompatibilities and
additional deployment and management complexities [26].

Based on the previous inter-domain scenario, we attempt to approach the
identification and resolution of connectivity disruptions at IXPs. The objective
is to decrease the number of packets lost during a routing protocol convergence
to a new route. The disconnection time between IXP participants is reduced to
a value lower than one second, which is the minimum configurable BGP hold
timer. We explore the enhancement of an IXP architecture with software-defined
networking (SDN) and stream processing technologies to provide fast failover on
the order of milliseconds.

In Section 2, the technical issues to be solved and the derived research goal,
as well as the research problem, are clarified. Section 3 formally introduces the
concept, design, and implementation of the proposed IXP architecture as well

Failover Inter-domain Routing Framework 3

as the technical issues derived in the previous section. In Section 4, evaluation
experiments are conducted in order to verify the feasibility and correctness of
the proposed method. Finally, Section 5 concludes this paper and suggests areas
for future research.

2 Technical Issues and Related Research

This section presents the main challenges to reducing the failover time of data
plane failures between Internet Exchange Point participants. An overview about
how the Border Gateway Protocol works is presented, and the mechanisms that
allow communication between network operators are provided.

2.1 Border Gateway Protocol (BGP)

Current Internet transport infrastructure relies on the BGP for interconnecting
different administrative Internet domains, which are also technically referred to
as autonomous systems (AS). As the de-facto standard for inter-domain routing
for more than twenty years, the main function of the BGP is to exchange reach-
ability information between ASes by means of BGP UPDATE or KEEPALIVE
messages [9]. If a BGP speaker does not receive a KEEPALIVE or UPDATE
message from a particular BGP neighbor for the duration of the Hold Time,
then the speaker will close the BGP connection. By default, the Hold Time is
set to 180 seconds on commercial routers. During the establishment of a BGP
session, KEEPALIVE messages notify each BGP peer that the neighbor router is
active. After a BGP session is established, the session is used as a mechanism to
determine whether peers are reachable by being exchanged at a regular interval,
which is usually one third of the configured Hold Time interval. KEEPALIVE
messages must not be sent more frequently than once per second [24].

2.2 Internet Exchange Points (IXPs)

An IXP is a network infrastructure that facilitates the exchange of Internet
traffic between ASes. Additional services offered at IXPs include the free use of
route servers. Route servers provide participants with a scalable solution to peer
with a large number of co-located ASes through a single BGP session, without
having to manually configure individual adjacencies with each AS. Generally,
participants in an IXP that want to exchange traffic must comply with some
basic requirements:

1. Have a public Autonomous System Number (ASN).
2. Bring a router to the IXP. Connect one of its Ethernet ports to the IXP

switch, and one of its WAN ports to the WAN media leading back to the
network of the participant.

3. The router of the participant must be able to run the BGP.
4. Agree to the General Terms and Conditions (GTC) of the IXP.

4 Yoshiyuki Kido et al.

Networks can peer publicly or privately in an IXP. Autonomous systems that
publicly use an IXP network infrastructure for exchanging traffic make a one-
time investment to establish a circuit from their premises to the IXP and pay a
monthly charge for using an IXP port and an annual fee for membership to the
operator of the IXP. Other than these costs, IXPs do not charge for exchanged
traffic volume, unless there is a violation of the GTC (e.g., sending traffic to
an AS without having received a route from that member). In addition, IXPs
offer private peering interconnects that are separated from the public peering
infrastructure and enable two ASes to directly exchange traffic and have a ded-
icated link that can handle stable and high-volume traffic (e.g., Internet2 Peer
Exchange (I2PX) and Cloud Connect [14]).

2.3 Internet Exchange Point Data Plane Failure Detection
Challenges

Data plane failures, such as physical disconnections between participants routers
and the IXP switch, interrupt traffic flows until the configured BGP hold timer
in the IXP route server expires. During this lapse of time, no failover mecha-
nism is started, and, as a result, packets are dropped between the disconnected
participants.

The goals of implementing a fast failover mechanism are to provide con-
tinuous service delivery after a failure has been detected and to optimize the
performance of networks by controlling how traffic flows [28]. Among the mo-
tivations for providing fast failover and control to traffic that crosses multiple
Internet domains are [10]:

Network failures and changes in routing policies: Neighbor domain fail-
ures and fluctuations degrade user performance and lead to inefficient use of
network resources.

Violation of peering agreements: If the amount of traffic exchanged by two
peer ASes is exceeded by one of the ASes, then an AS should have mecha-
nisms to direct some traffic to a different AS without affecting its neighbor
throughput.

Current limitations for providing fast failover at IXPs techniques represent a sig-
nificant challenge for applications and collaborations groups between distributed
domains that rely on underlying networks for services that include real-time data
rendering and transfers, on demand communication tools, and processing data
at high bandwidths for visual analysis. As pointed out in [15], each one of these
applications has multiple network requirements, such as guaranteed bandwidth,
traffic isolation, and time schedulers. Some of the limitations to providing fast
failover at the IXP and performing traffic engineering in the inter-domain sce-
nario derive from the BGP routing decision process, as presented in the following
section.

The following are some of the limits that have been recognized based on the
routing decision criteria of BGP that prevent fast reaction to data plane failure
events and dynamic distribution of traffic between ASes at IXPs:

Failover Inter-domain Routing Framework 5

Single next-hop per network prefix: The BGP neighbor with the shortest
AS path attribute is selected as the next-hop for forwarding all traffic to a
given destination, discarding valid offers from other BGP neighbors.

Rigid architecture: Widespread adoption of new routing features is difficult
because contiguous BGP neighbors need to overcome implementation incom-
patibilities before agreeing on their deployment.

Slow convergence: Border Gateway Protocol outages can take dozens of sec-
onds to recover. Until the BGP Hold Time expires, a new route will not be
selected for failover, and communication will not be resumed. This downtime
impacts the performance of applications that rely on continuous connectivity.

Regarding the slow convergence of the BGP, the Hold Time parameter can be
configured with low values. However, the problem with this is that if KEEPALIVE
messages are buffered longer than the Hold Time, or if one of the BGP processes
of the peering router cannot generate KEEPALIVE messages fast enough, then
the BGP session is terminated. Moreover, BGP routers can protect themselves
against aggressive KEEPALIVE timers from neighbors by refusing peering ne-
gotiation and never establishing a session [2].

2.4 Software-defined Networking (SDN) in Inter-domain Scenarios

In network devices (e.g., routers and switches), the packet-forwarding task is
performed by its data plane according to the rules and paths calculated by stan-
dard protocols running on its control plane. In a SDN architecture, the control
plane of a network device is decoupled from its data, enabling programmabil-
ity through an Application Programming Interface (API) such as OpenFlow or
P4 [16][4].

OpenFlow is a communication protocol that enables a centralized SDN Con-
troller to program the data path of a network device according to the decisions
of applications and protocols running on the control plane or application layer.
Among the features of the SDN architecture using OpenFlow, which is frequently
used, is automatic isolation of traffic flows programming the match-action tables
of the underlying network devices with OpenFlow rules.

The OpenFlow version 1.5 specification [21] supports the definition of mul-
tiple flow tables with rules that match flows to multiple parameters inside the
packets header, such as the source and destination IP address, VLAN ID, and
TCP or UDP port number. Inside the flow tables flow rules entries are sorted by
priority, where the highest-priority rules are at the top of the flow table. Inbound
packets are matched to the flow entries starting from the highest-priority rules.
If there is a match, then the flow matching stops, and the set of actions for the
matched flow entry are performed. Packets that do not match any flow entry are
dropped or sent to the controller for further analysis.

Previous studies attempted to override the BGP route selection process in
IXPs using SDN, provided fast failover times, and controlled how traffic flows
between ASes. In this section, we present the more relevant proposals and some
of their limitations.

6 Yoshiyuki Kido et al.

Software-defined IXP and iSDX Gupta et. al. [13] proposed a software-
defined IXP (SDX) in which each participant AS interconnects to a shared data-
plane and individually define forwarding policies relative to their current BGP
routing table, enabling application-specific peering and fast failover. Figure 2.11
illustrates an SDX interconnection model with three ASes logically peering with
an SDX Controller and pushing their routing.

In [12], how SDX can potentially fail at a large IXP as the compilation of BGP
route updates scales between participant ASes is discussed. Policy compilation
can take minutes as the number of participants exchanging traffic for hundreds
of thousands of prefixes increases. In order to reduce the policy compilation
time, Gupta et al. proposed a distributed model in which each participant AS
runs locally an SDX controller that compiles routing policies. An IXP SDX
controller collects the routing policies of all participants and updates the data
plane accordingly.

Other Inter-domain SDN approaches A similar distributed approach to
SDX was proposed by Wang et al. [27]. They introduced a framework for inter-
domain path diversity based on SDN and the BGP. Each participating AS im-
plements an enhanced SDN controller that exports and propagates to a peer
AS SDN controller network functions that enable the setup of routing paths
for particular applications. A richer criterion for the inter-domain route deci-
sion process is provided together with the BGP, as well as alternative routes to
destinations through participant ASes.

Chen et al. [6] also extended SDN to an inter-domain network federation
composed of several SDN autonomous domains. They proposed a network view
exchange mechanism of routing criteria (e.g., Quality of Service attributes and
application layer protocol numbers) across multiple SDN domains, enabling path
diversity between ASes, and extending the BGP forwarding decision process.
Based on the cited works in this section we recognize that the challenge of
providing fast failover and application specific peering between ASes is only
achievable only under the following assumptions:

– It is feasible for each participant AS to synchronously deploy the SDN tech-
nology locally and change their routing infrastructure.

– Autonomous systems with BGP routing implementation must be compatible
with supplemental control-plane information and extensions, i.e., custom
topology exchange algorithms.

2.5 Research Goal

The objective of this research is to decrease the packets dropped during an IXP
data plane failure event. We attempt to decrease the disconnection time between
the IXP participants to a value lower than one second, which is the minimum
configurable BGP Hold Time. In order to pursue this goal, we propose a frame-
work that reduces the failover process to the order of milliseconds. The proposed
failover framework implements SDN technologies and stream processing concepts

Failover Inter-domain Routing Framework 7

in an IXP. This failover mechanism detects in real-time data plane connectiv-
ity failure events that otherwise would have to wait until the BGP convergence
process ends to finish. In addition, this mechanism provides the capability of
reacting to BGP topology changes in order to avoid violations of inter-domain
traffic forwarding between members of an IXP. Unlike previous studies, we look
for a design that does not require the adoption of SDN technology in all partic-
ipants of the IXP in order to not affect their throughputs. There are two main
technical challenges to achieve the research goal:

Data plane failure detection: Even though the BGP hold timer can be con-
figured with a value of as low as one second, network device manufacturers
recommend not configuring the hold timer below 30 seconds to avoid route
flapping. In addition, in an IXP scenario, it is not feasible to demand that
every participant configure a low BGP hold timer. Therefore, in order to
achieve fast failover, it is not possible to rely on the BGP.

Correct failover path: This challenge derives from the previous challenge. If
the BGP is not to be implemented in the failover process, it is difficult to
guarantee that traffic redirection is to be done through an IXP participant
that can reach the same routes that the compromised participant adver-
tised. Lack of synchronization between the failover process and BGP route
advertisements can lead to inter-domain policy violations.

Considering these technical challenges, the proposed failover framework should
be designed to achieve a response time lower than the BGP Hold Time, and
process BGP UPDATE messages to route traffic consistently between IXP par-
ticipants.

3 Proposed Real-time Failover Framework

The basic idea behind the proposal is to reduce the IXP failover time upon
data plane failures by enhancing its architecture with SDN to execute the traffic
redirection task as a control plane application. A data plane failure event is
defined as the disconnection of the physical link between the border routers of
the AS and the IXP data plane switch. The proposed framework adds software
modules to the IXP in order to process these connectivity failure events in real
time.

One of the most important advantages of adopting this framework is that
it allows control plane applications to express their peering intents according
to a set of rules or an algorithm, thus enabling control of the failover path. A
hypothetical implementation of SDN in an IXP could be as follows. First, after
a data plane failure event is detected, and an SDN controller is notified via a
control channel. Then, an SDN application processes the event and proactively
updates the data plane via the SDN controller northbound API. After the flow
tables are updated, the failover process is completed and traffic continues cross-
ing the IXP through an alternate AS. Even though this approach can failover
to another path within a short time it overrides the next-hops calculated by the

8 Yoshiyuki Kido et al.

BGP. This can potentially violate BGP peering agreements and routing policies
between IXP participants, so implementation becomes infeasible.

The main challenge in handling the failover process as an SDN application is
that there is no direct channel or API with the IXP route server to learn valid
alternative BGP neighbors to redirect traffic to. Network automation techniques
allow applications to establish SSH sessions with a router, to collect and parse
the output of commands that echo the Routing Information Base (RIB), and
to store sessions in a database management system. However, collecting routing
information in this fashion is prone to errors and lacks consistency in cases in
which the result of the commands provide unexpected outputs or between routers
operating systems. Moreover, BGP UPDATE messages that add or withdraw
routes can arrive during the interval between SSH session establishment, making
this approach ineffective in terms of correct packet forwarding to valid BGP
neighbors. The failover process requires a mechanism that learns and considers
valid BGP next hops from the IXP route server.

Fig. 1. Basic concept of the proposed framework.

We propose a real-time processing approach in which data plane failures
and BGP updates are handled as a stream of events by a traffic engineering
application. Figure 1 illustrates the concept of the proposed framework. Valid
BGP alternatives for failover are learned from the IXP route server, bacause
BGP UPDATE messages are handled as a stream of events and stored in a hash

Failover Inter-domain Routing Framework 9

map data structure by the traffic engineering application. When a connectivity
failure occurs in the IXP data plane, the event is detected by an SDN controller
and published to a message broker system. Events are made available for the
traffic engineering application to consume and make a failover decision.

3.1 Real-time Failover Framework

Stream Processing and Messaging System The failover processing time is
proportional to the latency of the pipeline between event sources and processors.
The proposed framework requires data plane failures and BGP route withdrawal
events to be processed on the order of milliseconds. Because of this requirement
a stream processing system is chosen due to its capability to process data con-
tinuously as it arrives at a system [17]. Two types of actors compose a stream
processing system:

– Producers: write event records to the system datastore.
– Consumers: poll the system datastore periodically and read event records.

The consumer-polling task introduces overhead and delays into the system when-
ever records are written into the data store at a faster rate than they can be read.
In order to overcome this drawback, a message broker server is implemented, and
both producers and consumers connect to this server as clients. The message bro-
ker is an optimized database that stores producer events in memory and allows
fast reads from connected consumers. Low latency and high bandwidth between
the broker and its clients are recommended for implementations that require
processing events at a fast rate [1].

Software-defined Networking IXP Implementing SDN and OpenFlow at an
IXP enables external applications to manage the underlying switches forwarding
tables. The BGP can run as an SDN application that synchronously configures
the IXP data plane as BGP updates are received from participants. Apart from
this, SDN features do not introduce any additional inter-domain benefits directly,
but provide two additional capabilities that can be exploited for the failover
process:

– A data plane failure detection mechanism based on port status notifications.
– Flow rules match inbound packets in priority order.

OpenFlow enables data plane switches to exchange messages with an SDN con-
troller through an OpenFlow channel [21]. The channel is instantiated using
Transport layer Security or a TCP connection and is only used to exchange
control information (e.g., physical port status changes). As ports are added, re-
moved, or modified from data plane devices, notifications are sent to the SDN
controller with an OFPT PORT STATUS message. Details describing the rea-
son for this message are presented in Table 1. Whenever a loss of connectivity is
detected, the OFPPS LINK DOWN flag of the status message is set to “true”

10 Yoshiyuki Kido et al.

Table 1. OpenFlow Switch Port Status Messages.

Status Description

OFPPR ADD A port was added.

OFPPR DELETE A port was removed.

OFPPR MODIFY An attribute of the port has changed.

in order to notify the SDN controller that there is no physical link present at
the port.

Changes to the OFPT PORT STATUS message are useful in the proposed
framework because such changes provide a relatively faster data plane failure
detection mechanism than the BGP hold timer. OpenFlow switches send status
messages asynchronously to the SDN controller without soliciting them.

In an IXP with OpenFlow switches, inbound packets header contents are
matched to flow table entries. A flow table consists of entries defined by a match
field and a priority. For the case in which there is a match for multiple flow
entries, only the entry with the highest priority is considered [21]. For the pro-
posed failover framework, once a data plane failure is detected it is necessary
to install flow entries with a higher priority value than that installed by a BGP
application. Following this, inbound traffic matching a BGP route that flows
through a compromised BGP peer is redirected to another valid BGP next hop
so that communication is not interrupted.

BGP UPDATE Message Ingestion The proposed framework follows inter-
domain traffic engineering guidelines by not redirecting flows to ASes that are
not expecting to receive them (e.g., do not advertise routes to a compromised
destination). Candidates for routing traffic between IXP peers should be valid
according to their advertised BGP update messages. This principle is respected
by the BGP Monitoring Protocol (BMP) [25]. The BMP allows a server to export
an unfiltered BGP routing table from a router and to gather all possible routes
that can be used to reach each destination.

The BMP is implemented by two entities, i.e., a BMP collector and a BMP
client, that communicate over a TCP connection. Once the BMP session is
opened, the BMP client will start dumping to the BMP collector Route Monitor-
ing (RM) messages containing the Adjacent Routing Information Base Inbound
(Adj-RIB-In). In addition, incremental updates to advertising or withdrawing
routes are dumped. The peer session status is also dumped by a BMP client.
Because of these features, we herein consider a BMP collector in order to guaran-
tee that failover paths are valid according to the BGP. Moreover, whenever IXP
participants add routes or stop advertising them, the proposed failover frame-
work can automatically update the set of candidates considered for the traffic
redirection task.

Failover Inter-domain Routing Framework 11

Traffic Engineering Module As mentioned in Section 2, an IXP route server
performs the best path selection process on behalf of all of its participants. In
cases in which peering ASes implement route filters, these must be considered
by the IXP as well. In order to facilitate both features, the proposed framework
includes a Traffic Engineering module as an SDN application. Peering intents
are pushed to the SDN controller through its exposed Northbound API. Route
filters can be applied in the form of intents that explicitly specify the MAC ad-
dress of the next hop for traffic being previously forwarded by an unreachable
IXP participant. The Traffic Engineering module can also support custom traffic
engineering algorithms that make decisions based on additional route attributes
included in BGP update messages (e.g., LOCAL PREF), or other criteria, max-
imally leveraging the capabilities of SDN technology.

3.2 Failover Mechanism Implementation

The message broker acts as a buffer between event producers and consumers and
is implemented as a stream processing system that receives and makes available
the following information with low latency:

– BGP update messages from the BMP collector.
– Communication failure between the IXP switch and participants.

In both operations, the consumer is the Traffic Engineering module. Upon receiv-
ing any routing update or host down events, the failover process is triggered. The
message broker receives events related to connectivity failures, or BGP route up-
dates. Depending on the case, the child node identifies the unreachable next-hop
MAC address, or the IP address of an unreachable network. This information is
used as input by the next child node, which selects an alternative next hop that
can continue forwarding traffic. The final child node in the process installs flow
rules through the Northbound API of the SDN controller using a flow priority
value higher than that used by a BGP application.

Message Broker and Traffic Engineering Module The Message Broker
module implemented is Apache Kafka [17], which is chosen because of its capa-
bility as a stream processing platform for storing messages written by producers,
and makes the messages available to consumer software components with low
latency. Event records that arrive to the system are classified into topics and
written into a database table residing on the memory of the Kafka broker. The
Traffic Engineering module is an application implemented using the Kafka Java
consumer API (Listing 1.1), which feeds from three topics, each one running as
a separate thread:

– Data plane link failures.
– BGP Updates (new routes advertised or route withdrawals).
– BGP neighbor additions or deletions.

12 Yoshiyuki Kido et al.

Listing 1.1. Traffic Engineering module main thread

1 public class KafkaConsumerDemo {
2 public static void main(String[] args) {
3 boolean isAsync = args.length == 0 || !args[0].trim().

equalsIgnoreCase("sync");
4 ConsumerHost thread1 = new ConsumerHost("pmacct.acct");
5 ConsumerMessage thread2 = new ConsumerMessage("pmacct.

bmp_msglog");
6 HostDown thread3 = new HostDown("HOST");
7

8 thread1.start();
9 thread2.start();

10 thread3.start();
11 }
12 }

Each of these threads reads events and triggers the process for calculating
a valid next hop for compromised traffic. The thread that reacts to data plane
failures is shown in Listing 1.2. This thread starts executing by subscribing to
the “HOST” Kafka topic, which is where the SDN controller commits records
whenever it detects a link down in the data plane. The consumer poll method
is an infinite loop that continuously polls the HOST topic to retrieve new com-
mits at a frequency of 10 milliseconds. Whenever a data plane failure event is
committed to the HOST topic, a control loop is executed to perform the failover
task in the following order:

– Identify the unreachable IXP participant MAC address using the Consumer-
Host.get() method.

– Remove the compromised IXP participant from the Traffic Engineering mod-
ule data structure using the alt.remove() method.

– Construct a POST message with a new peering intent and send it to the SDN
controller through its REST API through the Postman.postman() method.

The desired method for the next-hop selection process is implemented on indi-
vidual Java classes: one for pre-configured next hops, and another for a round
robin algorithm that randomly selects a single next hop from among all valid
options.

Listing 1.2. Data Plan Failure Reaction Thread

1 @override
2 public void doWork() {
3 consumer.subscribe(Collections.singletonList("HOST"));
4 ConsumerRecords<Integer, String> records = consumer.poll();
5 for (ConsumerRecord<Integer, String> record : records) {
6 if (!record.value().isEmpty()) {
7 alt = Consumerhost.get();
8 hostDown = (record.value().substring(record.value().length

() - 10)).substring(0, 8);
9 alt.remove(hostDown);

10 }
11 }

Failover Inter-domain Routing Framework 13

12 try {
13 Postman.postman();
14 } catch (IOException ioe) { ioe.printStackTrace(); }
15 }

For the failover process the Traffic Engineering module must identify the port
of the unreachable IXP participant. To complete the task, the module must also
select a valid participant. The reachability information of each IXP participant
is stored in a hash map. The benefits of implementing this type of data structure
are:

– Reachability information can be stored and retrieved in no particular order.
– Data can be stored based on a key-value pair: For this proposal the key-

value pair consists of an IXP participant MAC address and the interface
port number used by the IXP switch to reach the address.

Software-defined Networking Controller The Open Network Operating
System (ONOS) is an SDN controller that implements OpenFlow as its primary
southbound protocol [3]. Within ONOS features, there are two key functionalities
required in an IXP environment that can be fulfilled:

– Physical layer failure notification to a message broker.
– Connection to external networks using BGP.

Section 3.2 introduced how the SDN controller detects data plane failure events.
Next, we clarify how this type of event is handled for failover purposes. In order
to share the failure events with other applications (e.g., the Traffic Engineering
module), the SDN controller must expose an interface where the MAC address
of an unreachable next hop can be propagated. It is desirable to transmit this
information between software components with low latency. For this purpose,
ONOS provides a Kafka Integration application [19] that serves as a data plane
event producer. As soon as ONOS receives an OFPT PORT STATUS message
with the OFPPS LINK DOWN flag set to“ true”, ONOS reacts by generating
an event record containing the MAC and IP address of the now unreachable
peer. These events are written into a Kafka topic, which is later consumed by
the Traffic Engineering module.

In order to establish BGP sessions with other networks, ONOS provides the
SDN-IP application [20]. When activated in an IXP, SDN-IP allows the ONOS
controller to learn BGP routing information from the route server. The BGP
routes are then translated by SDN-IP into OpenFlow rules that are installed on
the IXP data plane.

Border Gateway Protocol Monitoring Protocol Collector The imple-
mented BMP collector is pmacct [23], an open-source telemetry tool that dumps
BMP updates to a message broker like Kafka in JSON format. The IXP route
server is configured as a BMP client that establishes a BMP session with pmacct.
In the proposed framework it is of special interest when the IXP route server
send pmacct the following messages:

14 Yoshiyuki Kido et al.

– Peer Down notifications, which indicate that a BGP peering session was
terminated.

– Route Monitoring messages, which provide a snapshot of the Adj-RIB-In of
each monitored peer.

After pmacct receives both messages, the messages are published to the Kafka
broker for the Traffic Engineering module to consume and make the necessary
changes to the IXP data plane in order to maintain continuous communication
between participants.

4 Evaluation

Three experiments have been conducted to evaluate the failover time and packet
loss of the proposed real-time failover framework. The number of packets dropped
and the processing time overhead of the framework are measured for two sce-
narios:

– PP: Failover to a pre-configured path in the Traffic Engineering module.
– RR: Failover to a path that is randomly selected by a round robin algorithm.

The third experiment is designed to estimate the number of packets forwarded
incorrectly to an IXP participant after advertising a BGP route withdrawal.

Fig. 2. Internet Exchange Points (IXP) testbed used for evaluation.

Figure 2 illustrates the proposed real-time failover framework testbed used
for the experiments. Link failures are simulated between the IXP data-plane and
the AS that is the next hop for traffic toward the destination host. The failover
time is determined by measuring the processing time between the reception of a

Failover Inter-domain Routing Framework 15

link failure event by the ONOS controller and the time at which the data plane
intent is sent by the TE module.

Packets are captured in pcapng format using Wireshark [22]. These traces
are used to perform live monitoring of the traffic flows between hosts before and
after the failover process. In addition, Wireshark generates a timestamp of the
time when packets are captured, which is later used to determine the number of
packets dropped.

4.1 Experiment Environment

The IXP testbed has been emulated using GNS3 [11], which is a network emula-
tor that supports the complete functionality of network devices operating system.
The emulated routers run the Cisco Internetwork Operating System version 15.5
and are configured with 256 MB of RAM. The data-link layer is implemented
using Ethernet, and network devices interfaces support a bandwidth of 10,000
Kbits/s, an MTU of 1,500 bytes, and a delay of 1,000 microseconds. The SDN
IXP is responsible for translating BGP route entries to OpenFlow rules for each
peer AS in the following form:

packets from peer A destined for network C → forward to peer domain B.

The SDN implementation includes the ONOS SDN controller and a single Open
vSwitch. The SDN-IP and Kafka-integration applications are activated in the
ONOS controller. Within the IXP, SDN-IP installs and updates the forwarding
rules of the data-plane according to BGP route updates. The Kafka-integration
application is also activated in the ONOS controller in order to generate con-
nectivity failure events in real-time as a stream of records.

For evaluating the packets dropped during the failover process two virtual
machines that exchange traffic are deployed in the testbed. As Fig. 2 shows, the
source host is configured in the same network of AS1, which peers with the IXP
route server. The destination host is configured in the network of AS4, which
does not peer with the IXP directly. In this configuration, AS1 has multiple valid
paths to reach AS4, but due to the BGP best-path selection algorithm, only one
path is selected to forward the traffic between the two hosts. User Datagram
Protocol traffic is generated using netsniff-ng [18] at four different rates, and the
transmitted frames have a total length of 42 bytes.

For the first scenario, AS2 is pre-configured as the failover path and is se-
lected as the next hop during the failover process. It is possible to implement
an interface with the TE module that validates the pre-configured failover path
against the hash map containing the list of valid BGP next hops. We have de-
cided not to include such functionality because it will not impact the failover
time or packets dropped during a data plane failure event. Moreover, if an Open-
Flow rule is installed for forwarding traffic through a pre-configured next hop,
and later a BGP update message withdraws the route, then the TE module
detects the event and rollback to the route determined by the BGP best-path
selection algorithm.

16 Yoshiyuki Kido et al.

For the second scenario a round-robin function selects the best path from
available options stored in a hash map. The data structure holds key value pairs
corresponding to each IXP participant MAC address and port number at which
the pairs connect to the IXP switch. For both cases, the TE module sends a
new peering intent through the REST API exposed by the ONOS controller.
A POST method is constructed with its content type defined as a JSON ob-
ject that contains the MAC address, the port number of the next hop, and an
alphanumeric tag that uniquely identifies the installed flow rule.

4.2 Experimental Results and Discussion

Failover simulations were performed five times for each transfer rate. The dis-
connection interval was registered by measuring the time difference between
timestamps of data plane failures and peering intents sent by the TE module.
The round-trip times between the SDN controller and the Open vSwitch in the
data plane is not considered, because this time is on the order of microseconds.
The round-trip time between the Open vSwitch and each IXP participant is
also within the microseconds range, and so is discarded. Figure 3 shows traffic
arriving at AS4 during one of the multiple experiments.

Fig. 3. Traffic forwarded through the IXP toward AS4.

Before the link failure, traffic toward AS4 is forwarded by AS5. When the
link failure event is generated an interruption can be observed for a short interval
of time until the proposed failover framework redirects the traffic to AS2 (PP
case) or another IXP participant (RR case). Figure 4 illustrates the failover
time for both pre-configured paths (PP) and round-robin (RR) selection. The
results registered an average failover time of 31 milliseconds for PP, and 617
milliseconds for RR. Table 2 shows the average number of packets dropped at
different transfer rates.

Failover Inter-domain Routing Framework 17

Fig. 4. Proposed framework failover time for pre-configured path and round-robin se-
lection.

Table 2. Packets Dropped during Data Plane Failure Events.

Packets/s Packets

10 0

25 1

100 2

1000 27

5 Conclusion

In the present study, we approach the challenge of reducing the failover time at
an IXP by proposing a real-time failover framework that implements SDN and
a stream processing system. Integrating SDN into the IXP architecture enables
two features for improving the failover time provided by the BGP hold timer.
The first feature is detection of connectivity failures between participants using
OpenFlow, and the second feature is collection of the BGP routing tables of all
the IXP participants through the BGP Monitoring Protocol (BMP). We evalu-
ates the feasibility of the proposed framework by performing two experiments.
These experiments investigate the failover time and packets dropped during data
plane failure events. Traffic is exchanged between two hosts through an experi-
mental IXP testbed, and a link failure event is simulated between the data plane

18 Yoshiyuki Kido et al.

switch and a participant AS. Although the proposed framework makes assump-
tions about the IXP underlying data plane infrastructure, we believe that its
implementation in production has the potential to reduce the number of packets
dropped between participants during data plane failures events, and the BGP
Hold timer is configured with standard values (e.g., 90 seconds).

Acknowledgements. A part of this research was supported by the JSPS KAK-
ENHI Grant Number JP18K11355.

References

1. Akidau, T., Chernyak, S., Lax, R.: Streaming Systems. O’reilly (2018)

2. Beijnum, I.V.: BGP: Building Reliable Networks with the Border Gateway Proto-
col. O’reilly (2002)

3. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz,
B., O’Connor, B., Radoslavov, P., Snow, W., Parulkar, G.: ONOS: towards an
open, distributed SDN OS. In: HotSDN ’14: Proceedings of the third work-
shop on Hot topics in software defined networking. pp. 1–6 (August 2014).
https://doi.org/10.1145/2620728.2620744

4. Bosshart, P., Daly, D., Izzard, M., McKeown, N., Rexford, J., Talayco, D., Vahdat,
A., Varghese, G., Walker, D.: P4: Programming Protocol-independent Packet Pro-
cessors. ACM SIGCOMM Computer Communication Review 44(3), 87–95 (July
2014). https://doi.org/10.1145/2656877.2656891

5. Breen, J.: What Happens When the Science DMZ Meets the Commodity Internet?
In: The 2015 Internet2 Technology Exchange (October 2015), https://meetings.
internet2.edu/2015-technology-exchange/detail/10003935/

6. Chen, Z., Bi, J., Fu, Y., Wang, Y., Xu, A.: MLV: A Multi-dimension Routing In-
formation Exchange Mechanism for Inter-domain SDN. In: 2015 IEEE 23rd Inter-
national Conference on Network Protocols (ICNP). pp. 438–445 (November 2015).
https://doi.org/10.1109/ICNP.2015.34

7. Dart, E., Antypas, K., Bell, G., Bethel, E., Carlson, R., Dattoria, V., De, K., Foster,
I., Helland, B., Hester, M., Klasky, S., Klimentov, A., Lehman, T., Livny, M.,
Metzger, J., Milner, R., Moreland, K., Nowell, L., Pelfrey, D., Pope, A., Prabhat,
P., Ross, R., Rotman, L., Tierney, B., Wells, J., Wu, K., Wu, W., Yoo, B., Yu,
D., Jason, Z.: Advanced Scientific Computing Research Network Requirements
Review: Final Report 2015. Lawrence Berkeley National Laboratory Report (June
2016), https://escholarship.org/uc/item/8zd204n4

8. Dart, E., Bell, G., Benton, D., Canon, S., Cowley, D., Dattoria, V., Fagnan, K.,
Foster, I., Giuntoli, P., Hester, M., Hettich, R., Hnilo, J., Howe, A., Jacob, R.,
Jacobsen, D., Love, L., Madupu, R., Metzger, J., Palinisamy, G., Rabinowicz,
P., Rotman, L., Sears, R., Strand, G., Wehner, M., Williams, D., Zurawski, J.:
Biological and Environmental Research Network Requirements Review 2015 - Fi-
nal Report:. Lawrence Berkeley National Laboratory Report (September 2015),
https://escholarship.org/uc/item/3647b0mm

9. Denning, P.J.: The ARPANET after Twenty Years. Computers un-
der attack: intruders, worms, and viruses pp. 11–19 (February 1991).
https://doi.org/10.1145/102616

Failover Inter-domain Routing Framework 19

10. Feamster, N., Borkenhagen, J., Rexford, J.: Guidelines for Interdomain Traffic
Engineering. ACM SIGCOMM Computer Communication Review 33(5), 19–30
(October 2003). https://doi.org/10.1145/963985.963988

11. GNS3, https://www.gns3.com/
12. Gupta, A., MacDavid, R., Birkner, R., Canini, M., Feamster, N., Rexford, J., Van-

bever, L.: An Industrial-scale Software Defined Internet Exchange Point. In: 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). pp. 1–14. USENIX Association (March 2016)

13. Gupta, A., Vanbever, L., Shahbaz, M., Donovan, P.S., Schlinker, C.B., Feamster,
N., Rexford, J., Shenker, J.S., Clark, J.R., Katz-Bassett, B.E.: SDX: a Software
Defined Internet Exchange. ACM SIGCOMM Computer Communication Review
44(4), 551–562 (October 2014). https://doi.org/10.1145/2740070.2626300

14. Networking for Cloud, Internet2, https://www.internet2.edu/products-services/
advanced-networking/networking-for-cloud/

15. Kiran, M., Pouyoul, E., Mercian, A., Tierney, B., Guok, C., Monga, I.:
Enabling Intent to Configure Scientific Networks for High Performance De-
mands. Future Generation Computer Systems 79(1), 205–214 (February 2018).
https://doi.org/10.1016/j.future.2017.04.020

16. McKeown, N., Anderson, T.E., Balakrishnan, H., Parulkar, G., Peterson, L.L.,
Rexford, J., Shenker, S.J., Turner, J.:“OpenFlow: Enabling Innovation in Cam-
pus Networks. ACM SIGCOMM Computer Communication Review 38(2), 69–74
(March 2008). https://doi.org/10.1145/1355734.1355746

17. Narkhede, N., Shapira, G., Palino, T.: Kafka: The Definitive Guide. O’reilly (2017)
18. netsniff-ng, http://netsniff-ng.org/
19. Kafka Integration, ONOS Dashboard, https://wiki.onosproject.org/display/

ONOS/Kafka+Integration
20. SDN-IP Architecture, ONOS Dashboard, https://wiki.onosproject.org/display/

ONOS/SDN-IP+Architecture
21. OpenFlow Switch Specification Version 1.5.1, https://www.opennetworking.org/

wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
22. PCAP Next Generation Dump File Format, https://wiki.wireshark.org/

Development/PcapNg
23. pmacct project, http://www.pmacct.net/
24. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4). RFC 4271

(January 2016). https://doi.org/10.17487/RFC4271
25. Scudder, J., Fernando, R., Stuart, S.: BGP Monitoring Protocol (BMP). RFC 7854

(January 2016). https://doi.org/10.17487/RFC7854
26. Silva, W.J., Sadok, D.F.: A Survey on Efforts to Evolve the Con-

trol Plane of Inter-domain Routing. Information 9(5), 125 (May 2018).
https://doi.org/10.3390/info9050125

27. Wang, Y., Bi, J., Zhang, K.: A SDN-Based Framework for Fine-Grained Inter-
domain Routing Diversity. Mobile Networks and Applications 22, 906–917 (April
2017). https://doi.org/10.1007/s11036-017-0857-2

28. Xiao, X., Hannan, A., Bailey, B., Ni, L.: Traffic Engineering with
MPLS in the Internet. IEEE Network 14(2), 28–33 (March 2000).
https://doi.org/10.1109/65.826369

